Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
Ajouter des filtres

Type de document
Gamme d'année
2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.08.05.22278425

Résumé

The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. Here, we report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid alpha-Galactosylceramide, or MF59 squalene oil-in-water adjuvant. Each formulation drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. We have also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the highly immunoevasive beta variant (N501Y, E484K, K417N). This beta variant RBD vaccine, combined with MF59 adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a third dose booster vaccine following priming with whole spike vaccine, anti-sera from beta-RBD-Fc immunised mice increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1 and BA.2. These results demonstrated that an RBD-Fc protein subunit/MF59 adjuvanted vaccine can induce high levels of broad nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain Spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial.


Sujets)
Syndrome d'apnées obstructives du sommeil , COVID-19
3.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.03.22.485248

Résumé

Macrophages are a major source of pro-inflammatory cytokines in COVID-19. How macrophages sense the causative virus, SARS-CoV-2, to drive cytokine release is, however, unclear. Here, we show that human macrophages do not directly sense and respond to infectious SARS-CoV-2 virions because they lack sufficient ACE2 expression to support virus entry and replication. Over-expression of ACE2 in human macrophages permits SARS-CoV-2 entry and early-stage replication and facilitates macrophage pro-inflammatory and anti-viral responses. ACE2 over-expression does not, however, permit the release of newly synthesised virions from SARS-CoV-2-infected macrophages, consistent with abortive replication. Release of new, infectious SARS-CoV-2 virions from ACE2 over-expressing macrophages only occurred if anti-viral mediator induction was also blocked, indicating that macrophages restrict SARS-CoV-2 infection at two stages of the viral life cycle. These findings resolve the current controversy over macrophage-SARS-CoV-2 interactions and identify a signalling circuit that directly links macrophage recognition of SARS-CoV-2 to restriction of viral replication.


Sujets)
Syndrome respiratoire aigu sévère , COVID-19
4.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.12.14.472725

Résumé

Better methods to interrogate host-pathogen interactions during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections are imperative to help understand and prevent this disease. Here we implemented RNA-sequencing (RNA-seq) combined with the Oxford Nanopore Technologies (ONT) long-reads to measure differential host gene expression, transcript polyadenylation and isoform usage within various epithelial cell lines permissive and non-permissive for SARS-CoV-2 infection. SARS-CoV-2-infected and mock-infected Vero (African green monkey kidney epithelial cells), Calu-3 (human lung adenocarcinoma epithelial cells), Caco-2 (human colorectal adenocarcinoma epithelial cells) and A549 (human lung carcinoma epithelial cells) were analysed over time (0, 2, 24, 48 hours). Differential polyadenylation was found to occur in both infected Calu-3 and Vero cells during a late time point (48 hpi), with Gene Ontology (GO) terms such as viral transcription and translation shown to be significantly enriched in Calu-3 data. Poly(A) tails showed increased lengths in the majority of the differentially polyadenylated transcripts in Calu-3 and Vero cell lines (up to ~136 nt in mean poly(A) length, padj = 0.029). Of these genes, ribosomal protein genes such as RPS4X and RPS6 also showed downregulation in expression levels, suggesting the importance of ribosomal protein genes during infection. Furthermore, differential transcript usage was identified in Caco-2, Calu-3 and Vero cells, including transcripts of genes such as GSDMB and KPNA2, which have previously been implicated in SARS-CoV-2 infections. Overall, these results highlight the potential role of differential polyadenylation and transcript usage in host immune response or viral manipulation of host mechanisms during infection, and therefore, showcase the value of long-read sequencing in identifying less-explored host responses to disease.


Sujets)
Infections à coronavirus , Syndrome respiratoire aigu sévère , COVID-19 , Tumeurs colorectales
7.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.09.290247

Résumé

The rSWeeP package is an R implementation of the SWeeP model, designed to handle Big Data. rSweeP meets to the growing demand for efficient methods of heuristic representation in the field of Bioinformatics, on platforms accessible to the entire scientific community. We explored the implementation of rSWeeP using a dataset containing 31,386 viral proteomes, performing phylogenetic and principal component analysis. As a case study we analyze the viral strains closest to the SARS-CoV, responsible for the current pandemic of COVID-19, confirming that rSWeeP can accurately classify organisms taxonomically. rSWeeP package is freely available at https://bioconductor.org/packages/ release/bioc/html/rSWeeP.html.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
8.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.09.09.20191205

Résumé

The durability of infection-induced SARS-CoV-2 immunity has major implications for public health mitigation and vaccine development. Animal studies and the scarcity of confirmed re-infection suggests immune protection is likely, although the durability of this protection is debated. Lasting immunity following acute viral infection requires maintenance of both serum antibody and antigen-specific memory B and T lymphocytes and is notoriously pathogen specific, ranging from life-long for smallpox or measles4, to highly transient for common cold coronaviruses (CCC). Neutralising antibody responses are a likely correlate of protective immunity and exclusively recognise the viral spike (S) protein, predominantly targeting the receptor binding domain (RBD) within the S1 sub-domain. Multiple reports describe waning of S-specific antibodies in the first 2-3 months following infection. However, extrapolation of early linear trends in decay might be overly pessimistic, with several groups reporting that serum neutralisation is stable over time in a proportion of convalescent subjects. While SARS-CoV-2 specific B and T cell responses are readily induced by infection, the longitudinal dynamics of these key memory populations remains poorly resolved. Here we comprehensively profiled antibody, B and T cell dynamics over time in a cohort recovered from mild-moderate COVID-19. We find that binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection, as expected, with a similar decline in S-specific CD4+ and circulating T follicular helper (cTFH) frequencies. In contrast, S-specific IgG+ memory B cells (MBC) consistently accumulate over time, eventually comprising a significant fraction of circulating MBC. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent subjects to 74 days, with probable additive protection from B and T cells. Overall, our study suggests SARS-CoV-2 immunity after infection is likely t 66 o be transiently protective at a population level. SARS-CoV-2 vaccines may require greater immunogenicity and durability than natural infection to drive long-term protection.


Sujets)
Maladies virales , Lymphome B , COVID-19
9.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.01.278630

Résumé

SARS-CoV-2 vaccines are advancing into human clinical trials, with emphasis on eliciting high titres of neutralising antibodies against the viral spike (S). However, the merits of broadly targeting S versus focusing antibody onto the smaller receptor binding domain (RBD) are unclear. Here we assessed prototypic S and RBD subunit vaccines in homologous or heterologous prime-boost regimens in mice and non-human primates. We find S is highly immunogenic in mice, while the comparatively poor immunogenicity of RBD was associated with limiting germinal centre and T follicular helper cell activity. Boosting S-primed mice with either S or RBD significantly augmented neutralising titres, with RBD-focussing driving moderate improvement in serum neutralisation. In contrast, both S and RBD vaccines were comparably immunogenic in macaques, eliciting serological neutralising activity that generally exceed levels in convalescent humans. These studies confirm recombinant S proteins as promising vaccine candidates and highlight multiple pathways to achieving potent serological neutralisation.

10.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.05.17.20104869

Résumé

The rapid global spread of SARS-CoV-2 and resultant mortality and social disruption have highlighted the need to better understand coronavirus immunity to expedite vaccine development efforts. Multiple candidate vaccines, designed to elicit protective neutralising antibodies targeting the viral spike glycoprotein, are rapidly advancing to clinical trial. However, the immunogenic properties of the spike protein in humans are unresolved. To address this, we undertook an in-depth characterisation of humoral and cellular immunity against SARS-CoV-2 spike in humans following mild to moderate SARS-CoV-2 infection. We find serological antibody responses against spike are routinely elicited by infection and correlate with plasma neutralising activity and capacity to block ACE2/RBD interaction. Expanded populations of spike-specific memory B cells and circulating T follicular helper cells (cTFH) were detected within convalescent donors, while responses to the receptor binding domain (RBD) constitute a minor fraction. Using regression analysis, we find high plasma neutralisation activity was associated with increased spike-specific antibody, but notably also with the relative distribution of spike-specific cTFH subsets. Thus both qualitative and quantitative features of B and T cell immunity to spike constitute informative biomarkers of the protective potential of novel SARS-CoV-2 vaccines.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche